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Abstract
 Cellulose and xylan, the two major constituent of lignocellulose are the 
most abundant and renewable resource available on earth. Cellulose and xylan 
are complex substrates and their complete hydrolysis requires a variety of en-
zymes. Cellulases and xylanases are produced by microorganisms, algae, proto-
zoans, crustaceans and insects however, fungal and bacterial bioconversions are 
economically viable. In the present chapter, remarkable collections of fungi and 
bacteria have been brought to the limelight that can degrade cellulose and xylan. 
Mode of action and brief classification of various cellulases and xylanases have 
been mentioned. Further, insight knowledge on use of cellulases and xylanases 
for bioremediation and industrial applications were also provided. 
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1. Introduction

 The limitation in the availability of fossil fuels and their negative impact on environ-
ment made researchers to develop new eco-friendly processes based on renewable feedstock. 
Lignocellulose is one among such renewable feedstock [1]. Lignocellulose is the major com-
ponent of plants and referred as in exhaustible natural renewable sources on earth [2]. Ligno-
cellulose mainly consists of cellulose, hemicellulose, and lignin; along with small amounts of 
pectin, protein, extractives, and ash. However, these compositions vary depending on the plant 
source, but typically the major part consists of cellulose, followed by hemicellulose, and lignin 
[3].            
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 Cellulose is an unbranched homopolysaccharide consist of D-glucopyranosyl units [4] 
Hemicelluloses are branched heteropolysaccharides consist of pentoses (β-D-xylose, α-L-
arabinose), hexoses (β-D-mannose, β-D-glucose, α-D-galactose) and/or uronic acids (α-D-
glucuronic, α-D-4-O-methylgalacturonic, and α-D-galacturonic acids). Other sugars such as 
α-L-rhamnose, and α-L-fucose may also be present in small amounts and the hydroxyl groups 
of sugars can be partially substituted with acetyl groups [5].

 Lignin is a highly irregular and insoluble polymer consisting of phenylpropanoid sub-
units. Unlike cellulose or hemicellulose, no chains containing repeating subunits are present 
in lignin, thereby making the enzymatic hydrolysis of this polymer extremely difficult [2,4,6]. 
In order to utilize lignocelluloses chemical or biological hydrolysis are required. Chemical 
hydrolysis mainly includes acid, alkali and steam explosion. Recent development in biological 
hydrolysis, it is now known to be more effective, economical, eco-friendly as compared to the 
chemical-based approaches and hence biological hydrolysis are now replacing the chemical-
based treatments [7].

 Biological hydrolysis of lignocelluloses is complex and requires multi-enzyme system 
[8]. Different components of lignocellulose require different enzymes. For the efficient hydro-
lysis of cellulose, the action of at least three enzymes namely, endoglucanases, exoglucanases 
and β-glucosidase are required [9]. Xylan hydrolysis (the major part of hemicellulose) needs 
multi-enzyme systems, such as endoxylanases, β-xylosidases, α-L-arabinofuranosidases, and 
acetyl esterases [8]. Lignin degradation requires two major groups of enzymes mainly heme-
peroxidases and laccases [10]. Since, various enzymes are involved in lignocellulose hydroly-
sis and it is difficult to include all in a single chapter hence, the present book chapter focus on 
enzymes involved in the hydrolysis of two major parts of lignocellulose, cellulose and xylan. It 
lists some fungal and bacterial derived cellulase and xylanase and their possible applications.

2. Cellulases

 Cellulases (EC 3.2.1.4) are the enzymes that break the cellulose molecule into monosac-
charide or shorter polysaccharides [11]. The degradation of cellulose involved two steps. In 
the first step, anhydroglucose chains are swollen or hydrated and in the second step, hydrolytic 
cleavage of susceptible polymers either randomly or endwise occurs [12].

 Cellulases have been produced by microorganisms including bacteria, archaea and fun-
gi. Cellulases were also produced by some animals, but their function in animal system are still 
unclear [13,14].
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2.1 Enzymatic hydrolysis of cellulose

 The enzymes required for the hydrolysis of cellulose are exoglucanases, endoglucanas-
es, β–glucosidases and cellobiose phosphorylase. Exoglucanases are the type of cellulase that 
acts on the terminal end of cellulose chain, releasing glucose or cellobiose as the end product 
(Figure 1). Exoglucanase are of two types; 1,4-β-D-glucan cellobiohydrolase (EC 3.2.1.91) 
removes cellobiose units while 1,4-β-D-glucan glucohydrolase (EC 3.2.1.74) removes glucose 
units [15].

 In contrast to exoglucanases, endoglucanases (EC 3.2.1.4) are responsible to initiate 
cleavage and hydrolyze cellulose randomly at the internal regions, releasing oligosaccharides 
(Figure 1) [16]. β-Glucosidases (EC 3.2.1.21) catalyze the hydrolysis of β-1-4 bonds linking 
two glucose or substituted-glucose molecules [16,17]. Cellobiose phosphorylase catalyzes the 
reversible phosphorolytic cleavage of cellobiose [18]. A list of fungi and bacteria producing 
different type of cellulase represented in Table 1.

2.2. Microbial source for cellulase

 Utilization of cellulose in sufficient amount to provide usable energy to an organism 
was thought to be carried out by microorganisms [9]. A wide range of microorganisms are 
capable of producing cellulase. Cellulase production has been reported by both aerobic and an-
aerobic microorganisms. However, there is a distinct difference in cellulose degradation strat-
egy. Usually, anaerobes degrade cellulose via complex cellulase systems exemplified by the 
well-characterized polycellulosome organelles. Several anaerobic species that utilize cellulose 
do not release measurable amounts of extracellular cellulase, and instead have localized their 
complex cellulases directly on the surface of the cell or the cell-glycocalyx matrix. Aerobic 
cellulose degraders utilize cellulose through the production of extracellular cellulase enzymes 
that are freely recoverable from culture supernatants [9].

Figure 1: Enzymatic hydrolysis of cellulose.
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2.2.1. Bacterial cellulase

 Bacteria producing cellulase have been reported from various ecological niches, such as 
soil sample [31], dairy farm soil [32], mangrove soil [33], deep-sea sediment [34], hot springs 
[35], rhinoceros dung [36], pig intestine [37], gut of fish [38], etc. Cellulases have been re-
ported by aerobic, anaerobic and facultative bacteria, Table 2 highlight some of them.

 In the past few years, many cellulase producing novel strains (Table 3) including aero-
bic, anaerobic and facultative were added to the prokaryotes list such as gram negative, aero-
bic novel genus (of the family Phyllobacteriaceae) isolated from surface seashore water (Ori-
colacellulosilytica) was reported for cellulose degradation [39]. Clostridium phytofermentans, 
an obligate anaerobic novel species, isolated from forest soil was reported for cellulase activity 
[40]. Novel genus Cellulosibacter (type species as Cellulosibacter alkalithermophilus) iso-
lated from coconut garden was reported for cellulase activity [41].

 Cellulase for industrial applications needs to withstand various extreme conditions such 
as temperature and pH. Bacterial cellulases have been considered as an important industrial 
source as they can withstand extreme temperature and pH [42, 43]. For food industry, environ-
mental bioremediation, and molecular biology study psychrophiles cellulase are needed [44]. 
Psychrophilic cellulase from Pseudoalteromonas haloplanktis can be used for such applica-
tions [45]. In some steps of textile industry, acidic and psychrophilic cellulases are required. 
Bacteria are also reported for such cellulase. Bacteria such as Klebsiella sp. produce cellu-

Fungi/bacteria  Type of cellulase References

Aspergillus niger Exoglucanase [15]

Cellulomonas flavigena Exoglucanase [19]

Bacillus subtilis Exoglucanase [11]

Clostridium stercorarium Exoglucanase [20]

Irpexlacteus Exoglucanase [21]

Gloeophyllum trabeum Endoglucanase [22]

Thermoascus aurantiacus Endoglucanase [23]

Cellulomonas,  Bacillus and 
Micrococcus spp.

Endoglucanase [24]

Streptomyces misionensis PESB-25 Endoglucanase [25]

Trichoderma β – Glucosidases [26]

Aureobasidium pullulans                                   β – Glucosidases [27]

Penicillium decumbens β – Glucosidases [28]

Neocallimastix patriciarum β – Glucosidases [29]

Ceriporiopsis subvermispora β – Glucosidases [30]

Table 1: List of fungi and bacteria producing different class of cellulase
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lase active at 10 °C and pH 4.5, this type of cellulase can be used in textile industries [46]. 
Apart from psychrophilic cellulase, bacteria also produce alkali and thermo tolerant cellulase. 
Marinobacter sp. (MSI032) isolated from the marine sponge has been reported for cellulase 
production. The enzyme produced by Marinobacter sp. (MSI032) was alkalotolerant, active 
at pH 9.0 [43]. Similarly, alkalotolerant cellulase from Nocardiopsis sp. SES28, isolated from 
Argentina was active at pH 8.0 and 40 °C [47]. Bacillus mycoides S122C show cellulase ac-
tivity at 50 °C and pH 7.0 [48]. Geobacillus pallidus show cellulase production at 60°C [49]. 
Thermophilic bacterium Caldibacillus cellulovorans show cellulase activity at 80 °C [42].

Table 2: List of aerobic, anaerobic and facultative anaerobic bacteria producing cellulase 

Table 3: List of novel bacterial strains producing cellulase.

Bacteria Growth condition References

Balneomonas flocculans Aerobic [50] 

 Paenibacillus terrae ME27-1 Aerobic [51] 

Pseudomonas fluorescens Aerobic [52] 

Paenibacillus cellulositrophicus Facultative anaerobe [53] 

Cellulomonas uda Facultative anaerobe [54] 

Halocella cellulolytica Facultative anaerobe [55] 

Bacteroides cellulosilyticus Anaerobe [56] 

Ruminococcus champanellensis Anaerobe [57] 

Herbivorax saccincola Anaerobic [58] 

Herbinix hemicellulosilytica Anaerobic [59] 

Streptomyces reticuli Aerobic [60] 

Streptomyces drozdowiczii Aerobic [61] 

Bacteria Isolated from References

Herbinix hemicellulosilytica Biogas reactor [59] 

Herbivorax saccincola Biogas reactor [58] 

Cohnella cellulosilytica Buffalo faeces [62] 

Cellulomonas terrae Soil [63] 

Cellulomonas composti Cattle farm [64] 

Vibrio xiamenensis Mangrove soil [33] 

Pseudomonas coleopterorum Bark beetle [65] 

Bacteroides cellulosilyticus Human gut [56] 

Ruminococcus champanellensis Human gut [57] 

Paenibacillus cellulositrophicus Soil [53] 
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2.2.2. Fungal cellulase 

 Fungal cellulase have advantages over bacterial cellulase in having high yield and able 
to produce a complete cellulase system [66]. Cellulase producing fungi are ubiquitous and 
found in a wide variety of environments such as soil, decaying logs of wood, sawdust [67], for-
est soil [68], litter soil [69], mushroom compost [70], marine sample [71], bovine rumen [72], 
and even as endophytes [73]. Unlike bacterial cellulase, fungal cellulases were active over a 
wide range of temperatures. Psychrotolerant fungus, Aspergillus terreus AKM-F3 produce 
optimum cellulase at 15 °C [74], Aspergillus niger produce optimum cellulase at 30 °C [75]. 
Nectria catalinensis cellulase activity ranged from 50 to 55 °C [76]. Aspergillus fumigatus 
M.7.1 and Myceliophthora thermophila M.7.7 produce cellulase at 70 °C [77].

 Fungal cellulases are also active over a wide range of pH. Penicillium citrinum was 
reported for alkali stable cellulase [78]. Acid tolerant cellulase was reported by Trichoderma 
reesei [79]. Fungus with dual tolerance such as acido-thermo-tolerant cellulase by Chaeto-
mium thermophile (pH 4.0-4.5 and 60°C) [80] and Penicillium sp. CR-316 and Penicillium sp. 
CR-313 (65 °C and pH 4.5) [68] was also reported.

3. Xylanase

 Xylanases (EC 3.2.1.x) are glycosidases which catalyze the endohydrolysis of 1,4- β-D-
xylosidic linkages in xylan. They are produced by a plethora of organisms including bacteria, 
algae, fungi, protozoa, gastropods, and anthropods [81]. 

 There is a phenomenal increase in the use of microbial xylanase as they offer advan-
tages over conventional chemical catalysts, including high catalytic activity, high degree of 
substrate specificity, high productivity, easily biodegradable, pose no threat to the environ-
ment, and are economically viable [82].

3.1. Enzymatic hydrolysis of xylan

 Due to the complex structure of xylan, its hydrolysis includes different types of en-
zymes. Endo-xylanases are the enzymes that cleave the glycosidic bonds in the xylan backbone, 
bringing about reduction in the degree of polymerization of the substrate [83]. β-xylosidase 
(E.C.3.2.1.37) hydrolyze short xylooligomers into single xylose units. There is a significant 
variation in their mode of action of β-xylosidases when compared to exo-xylanases. Exo-
xylanases act on the xylan backbone from the reducing end (exo-fashion) producing short-
chain oligomers whereas β-xylosidases hydrolyze short xylooligomers into single xylose units 
[84,85,86]. α-D-Glucuronidases (E.C.3.2.1.139) cleaves the α-1,2-glycosidic bond of the 4-O-
methyl-D-glucuronic acid side chain of xylan [87,86]. α-Arabinofuranosidases (EC 3.2.1.55) 
are enzymes known to release terminal α -1,2-, α-1,3- and α-1,5 α-L-arabinofuranosyl residues 
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from hemicellulose such as arabinoxylan and other L-arabinose containing polysaccharide 
[83]. Acetylxylan esterase (EC 3.1.1.72) acts on carboxylic ester bonds. Ferulic acid esterase 
and p-coumaric acid esterase cleave ester bonds on xylan [88]. Ferulic acid esterase cleaves 
the linkage between arabinose and ferulic acid side groups, while p-coumaric acid esterase 
cleaves between arabinose and p-coumaric acid [89].

3.2. Microbial source for xylanase 

 Horikoshi and Atsukawa in 1973 [90] reported the commercial application of xylanase 
obtained from alkaliphilic bacteria. However, studies on microbial xylanase started during the 
1960s, but the main focus of the study was plant pathogen relation. The study suggests that, 
xylanase along with other enzyme degrade the plant cell wall which cause the infection [91]. 
Due to the wide application of xylanase, several fungi and bacteria were explored for the abil-
ity to produce xylanase.

3.2.1. Bacterial xylanase

 Bacteria producing xylanase have been isolated from various environments such as soil 
sample [90], marine sample [92], hot-spring water [93], mushroom compost [94], poultry 
compost [95], human gut [96], and sheep dung [97]. Prevalence of the xylanolytic bacteria 
have been reported from most of the bacterial groups (Table 4). 

 Bacterial xylanases has been reported to be active at wide temperature range. Pseudo-
alteromonas haloplanktis TAH3A (XPH) and Flavobacterium sp. MSY-2 (rXFH) have been 
reported for producing psychrophilic xylanases [98]. Kluyvera sp. strain OM3 can produce 
high level of cellulase free xylanase at 70 °C [99]. Bacteria like Thermonosporafusca, Bacil-
lus stearothermophilus, and Dictyoglomus thermophilum show an optimum xylanase activity 
at temperature ranging from 65 to 85 ºC [100,101,102]. The first report on xylanase from al-
kaliphilic bacteria, Bacillus sp. TAR-1 was reported by Horikoshi and Atsukawa (1973) [90]. 
Apart from psychrophilic thermophilic and alkalophilic, haloalkaline xylanase [92)] and acidic 
xylanase [103] were also reported.
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3.2.2. Fungal xylanase 

 Fungi are often selected for the production of xylanase, as their yield are much higher 
than bacteria and in addition they also produce several auxiliary enzymes required for the 
degradation of substituted xylan [83]. Unlike bacterial xylanase, fungal xylanases are active at 
high temperature, low temperature, acidic pH, alkaline pH and even salt tolerant [119,120,121]. 
Trichoderma reesei produces xylanase in the mesophilic range [121] while Cladosporium sp. 
produces cold-active xylanase [122]. The most thermostable xylanases that have been de-
scribed so far are those derived from Thermotoga sp. FjSS3-B.1, Thermotoga maritima, Ther-
motoga neapolitana, and Thermotoga thermarum which are active at temperatures ranging 
from 80 °C to 105 °C [123]. Neocallimastix frontalis produces xylanase active at acidic pH 
[124]. Gloeophyllum trabeum produces xylanase at high temperature (70 °C) under broad pH 
range (4-7) [125].

4. Application of Cellulase and Xylanase

4.1. Cellulase and xylanase in the textile industry

 A lot of limitations have been imposed on the textile industry due to rising environmen-
tal pollutions caused due to chemicals used during the process. In order to combat this situa-
tion, enzymatic treatment has emerged as an eco-friendly solution [14]. Cellulase and xylanase 
are one among the enzymes which are extensively used in the textile industries [126,83]. In 
textile industry, cellulase and xylanase have been used in various steps such as, during fabric 

Bacteria References

Caldicoprobacter algeriensis [104]

Pseudoalteromonas haloplanktis [105]

Staphylococcus sp. SG-13 [106] 

Bacillus circulans [107]

Streptomyces actuosus A-151 [108] 

Streptomyces matensis [109] 

Streptomyces sp. 7b [110] 

Bacillus licheniformis SVD1 [111] 

Geobacillus thermodenitrificans [112] 

Pseudomonas sp.WLUN024 [113] 

Nonomuraea flexuosa [114] 

Thermoanaerobacterium saccharolyticum NTOU1   [115] 

Gracilibacillus sp. TSCPVG [116] 

Acinetobacter junii F6-02 [117] 

Jonesia denitrificans [118] 

Dictyoglomus thermophilum [102] 

Table 4: List of xylanase producing bacteria
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softening [83], bio-stoning of denim garments [14,126], bioscouring [14], releasing the extra 
dye [126], improving textile brightness [127], and bio-bleaching [128]. The use of microbial 
cellulase has several advantages over traditional stone washing (which mainly include pumice 
stones) including high productivity, less work-intensive, safer environment, short treatment 
times and less wear and tear of machines [129]. Cellulase from Penicillium occitanis [130] 
and Trichoderma reesei found to be very efficient candidates for biostoning application [131]. 
Xylanase from Bacillus pumilus, Bacillus stearothermophilus SDX, and Penicillium janthinel-
lum have been used in textile industries for de-sizing of cotton and micropoly fabrics. It also 
helps in lowering the wetting time of fabrics, bioscouring efficiency and reducing the weight 
loss of the fabrics [132, 133, 134]. Cellulase from Trichoderma reesei [135] and Aspergillus 
niger have been used for biopolishing of the fabric [136].

4.2. Cellulase and xylanase in paper industry

 Cellulase and xylanase have been used in the paper industry to overcome the limitations 
of mechanical pulping processes such as refining and grinding [14,137]. Xylanase from Strep-
tomyces thermoviolaceus [138], Aspergillus sydowii [139], Trichoderma reesei [121], Bacillus 
pumilus, Aspergillus fumigates, Chaetomiumcellulolyticum, Thermomyceslanuginosus, and 
Aspergillus kawachii have been used for bleaching [140, 83, 138].

 Xylanase have been used to increase pulp brightness, removing metal cations, reduc-
ing the overall paper cost, reducing the beating time of pulp, and restoring of bonding [141]. 
Xylanase treatment can render the chlorine requirement [142]. Cellulase and xylanase were 
beneficial for deinking of different types of paper wastes. Xylanase from Aspergillus niger 
DX-23 [143] and cellulase from alkalotolerant Fusarium sp. [144] were suitable for deinking. 
Advantages of enzymatic deinking over chemical deinking includes, reduce alkali usage, im-
proved fiber brightness, enhanced strength, higher pulp freeness, and reduced fine particles in 
the pulp [137].

4.3. Cellulase and xylanase in food industries

 Cellulase and xylanase found applicable in many food industries. They have been used 
for juice clarification, improving the quality of bakery products, reducing the viscosity of nec-
tars, alteration of fruits sensory properties, used for olive oil extraction, and during beer and 
wine production [137].

 During the early 1930s, when fruit industries began to produce juice, macerating enzymes 
complex (cellulases, xylanases and pectinases) from food-grade microorganisms (Aspergillus 
niger and Trichoderma sp.) have been extensively used to increase the juice yield and to over-
come the difficulties encountered during filtration [145]. 
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 In the baking industries, wheat (which consist hemicellulose) is the key material. The 
hemicellulose present in the wheat is water-insoluble and cause many problems [146]. Xy-
lanase during baking helps to transforms water-insoluble hemicellulose into a soluble form, 
which helps to increase the volume and creating finer and more uniform crumbs [147]. Xyla-
nase from Aspergillus foetidus showed a remarkable difference in water absorption [148]. Xy-
lanase also improves the quality of dough in such a way that it does not stick to the machinery 
parts, making it more machine-friendly [147]. Xylanase also enhances the bread quality and 
extend the shelf life by reducing the staling rate [149].

 Cellulase and xylanase plays an important role during beer and wine production [150, 
151]. The first microbial enzyme used in the wine industry was a commercial pectinase from 
Aspergillus. However, in the early 1980s, it was suggested that Trichoderma β-glucanase 
could be successfully used for wine making from grapes which were infected with Botrytis 
cinerea. Botrytis cinerea deteriorate ripe grapes and produces a high molecular mass soluble 
β-(1,3) glucan with short side chains linked through β-(1,6) glycosidic bonds, which cause 
severe problem during wine filtration. Trichoderma β-glucanase hydrolyzes glucans that cause 
adverse effects during filtration of wine [145]. Endoglucanase II and exoglucanase II from 
Trichoderma showed maximum reduction in the degree of polymerization and wort viscosity 
[152].

In past few years, β-glucosidase has attracted considerable attention in the wine industry be-
cause of its ability to improve the aroma of wines by modifying naturally present, glycosylated 
precursors [153]. Apart from glycosidase, α-L arabinofuranosidase and β-D-glucopyranosidase 
also help to increase the aroma of wine [151].

4.4. Cellulase and xylanase in animal feed Industries

 Cellulase and xylanase have been used in animal feed industries, which help to improve 
feed nutritional value, eliminate anti-nutritional factors present in the feed grains, degrade cer-
tain feed constituents to improve the nutritional value, and provide supplementary digestive 
enzymes [137]. Cellulase and xylanase as feed additive helps digestion in cows and increase 
milk production [154]. Xylanase from Aspergillus niger helps growth performance, nutrient 
digestibility, and non-starch polysaccharide degradation in broilers [155]. Wheat and barley 
based supplement with xylanase and β-glucanase showed significant increased body weight 
and feed efficiency of turkeys [156]. 

4.5. Cellulase and xylanase in treating agricultural and forest wastes

 Forest and agriculture, accounts for highest lignocellulosic waste production [157]. The 
major components of lignocellulosic are biodegradable; however, these are unlikely to re-
sult in hazardous conditions when there is inadequate oxygen to assimilate the wastes. When 
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this occurs, there is considerable damage to economic activities and the environment as well 
[158]. Enzymatic hydrolysis offer perspectives degradation of such waste, because it is a more 
specific process and the products obtained are without the presence of undesirable products 
[159,160]. Cellulase can remove the apple pomace waste [161] while cellulase and xylanase 
together can degrade lignocelluloses waste (beech tree leaves) [162]. Cellulase and xylanase 
from Aspergillus niger F7 were efficient in degrading forest wastes such as Toonaciliata, Cel-
trisaustralis, Cedrusdeodara and Pinusroxburghii [163]. Exo-1,4-β-glucanase from Tricho-
derma viride has been efficiently used to remove orange peel waste.

5. Conclusion

 Microbial cellulase and xylanase have shown their potential application in textile in-
dustries, paper industries, food industries, animal feed industries, juice industries, brewing 
industries, bioremediation and bio-refinery for forest and agriculture wastes. Due to immense 
industrial potential, microbial cellulases and xylanases represents potential candidates for re-
search by both the academic and industrial research groups. Despite an increased knowledge 
of fungal and bacterial cellulases and xylanases, further studies to isolate potential cellulases 
and xylanases producing strains and direction for improving the process economics should be 
carried. 
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